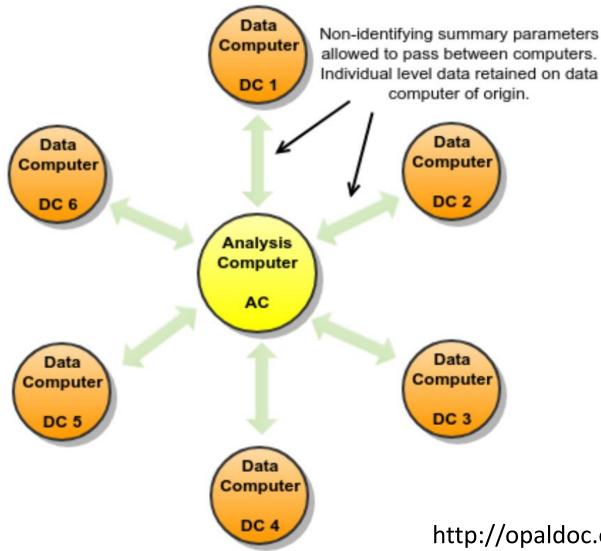


Federated analyses

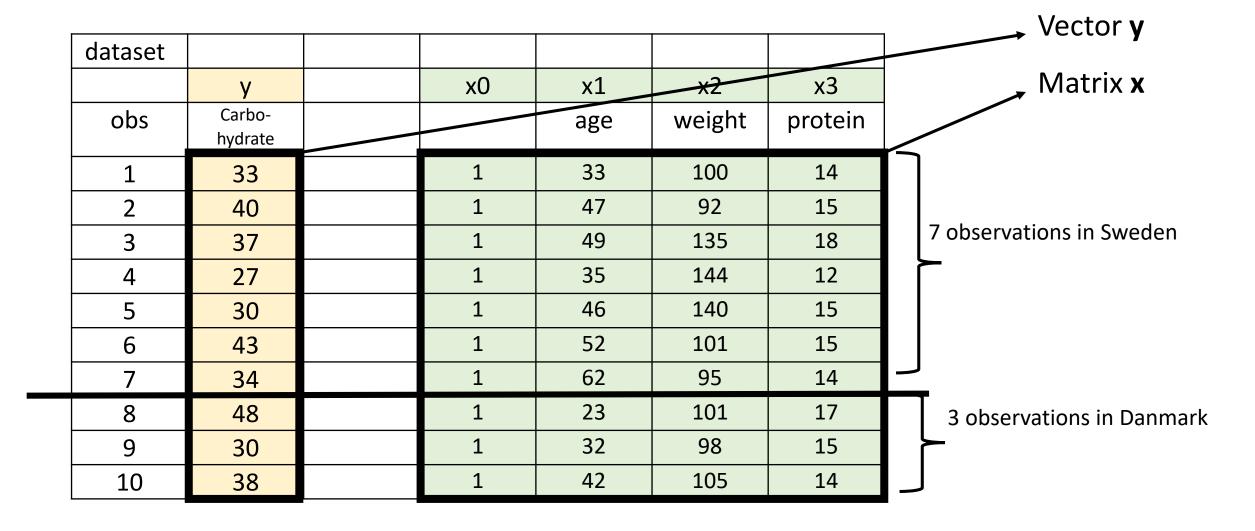
technical, statistical and human challenges


Bénédicte Delcoigne, Statistician, PhD Department of Medicine (Solna), Unit of Clinical Epidemiology, Karolinska Institutet

What is it?

- When statistical power is the main limitation*
 => increase the amount of data
 - pooling similar data => ethico-legal constraints & difficulties/reluctance for sharing data
 - performing a meta-analysis => pooled estimates (Study Level Meta-Analysis SLMA)
- Federated analysis: centralized analysis with individual-level data remaining on local servers
 - => equivalent to meta-analysis at individual level (Individual Level Meta-Analysis ILMA)
- Several solutions for performing federated analyses
- DataSHIELD package in R

How DataSHIELD is functioning



http://opaldoc.obiba.org/en/latest/r-user-guide/index.html

How does a federated analysis work?

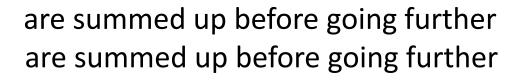
An example with linear model (because it is simple)

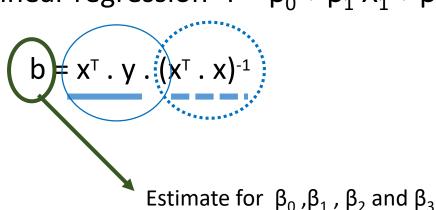
Linear model: data splitted horizontally

Linear regression $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + error term$

Estimate for p_0, p_1, p_2 and p_3

Using the entire data set or separated datasets gives the same vector of estimates b, provided that:

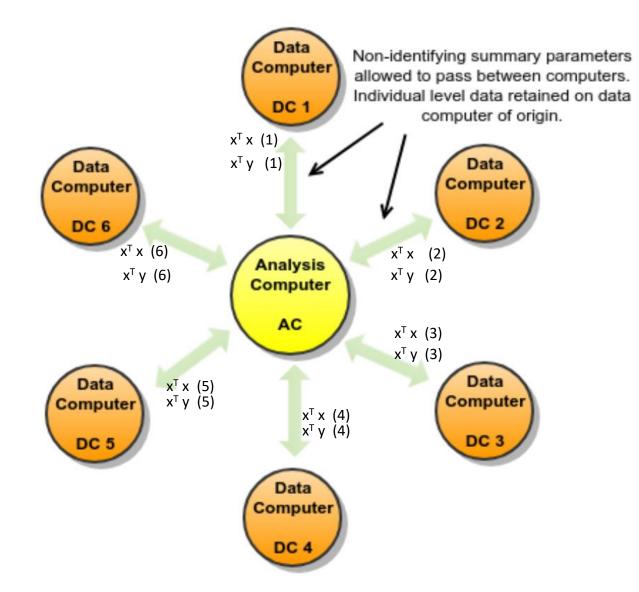

Dataset_1:


dataset					
	у	x0	x1	x2	x3
obs	Carbo- hydrate		age	weight	protein
1	33	1	33	100	14
2	40	1	47	92	15
3	37	1	49	135	18
4	27	1	35	144	12
5	30	1	46	140	15
6	43	1	52	101	15
7	34	1	62	95	14

Dataset_2:

8	48	1	23	101	17
9	30	1	32	98	15
10	38	1	42	105	14

 x^{T} . x for dataset_1 and x^{T} . x for dataset_2 x^T. y for dataset_1 and x^{T} . y for dataset_2



dataset					
	у	x0	x1	x2	x3
obs	Carbo- hydrate		age	weight	protein
1	33	1	33	100	14
2	40	1	47	92	15
3	37	1	49	135	18
4	27	1	35	144	12
5	30	1	46	140	15
6	43	1	52	101	15
7	34	1	62	95	14
8	48	1	23	101	17
9	30	1	32	98	15
10	38	1	42	105	14

With DataSHIELD

AC: Analysis Computer DC: Data Computer

Challenges

- Technical challenges: a good IT team is needed
- Statistical challenges: the choice of analysis
- What is doable right now with available tools in R:
 - DataSHIELD: Data Aggregation Through Anonymous Summary-statistics from Harmonised Individual levEL Databases
 - distcomp: Computations over Distributed Data without Aggregation

Statistical challenges: DataSHIELD and GLM

Exponential family regression model

- Linear models: $E(Y_i) = \mu_i = \mathbf{x}_i^T \beta$ with $Y_i \sim N(\mu_i, \sigma^2)$
- Generalisation to non-linear function: link function $g(\mu_i) = \mathbf{x}_i^T \beta$
- General expression of the log likelihood of an outcome Y_i : $Log L(\theta_i, \phi) = \frac{Y_i \theta_i - A(\theta_i)}{\phi} + c(y_i, \phi)$ with $E(Y_i) = A'(\theta_i)$ $var(Y_i) = \phi A''(\theta_i)$
- $A(\theta_i)$ chosen among standard models:
 - $A(\theta_i) = \frac{\theta_i^2}{2}$ $A(\theta_i) = \exp(\theta_i)$ Normal model
 Poisson model

DataSHIELD and GLM (continued)

• Iterative Weighted Least Squares (IWLS) for estimating β

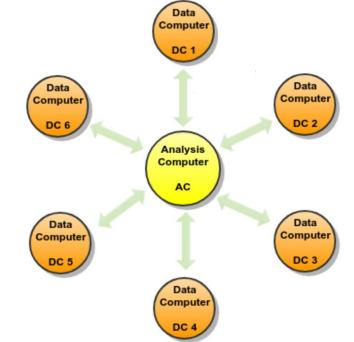
Starting with $\beta^0\,$ the updating formula is:

 $\beta^{1} = \beta^{0} + \{I(\beta^{0})\}^{-1} S(\beta^{0})$

with:

{ $I(\beta^0)$ }⁻¹ the inverse of the Fisher information matrix, the variancecovariance matrix of the parameter estimates

 $S(\beta^0)$ the score function



DataSHIELD and GLM (continued)

Step 1: Transmission AC -> DC lines of code to run the statistical model (1st iteration) and obtain necessary elements to continue (in linear model example: $x^T y$ and $(x^T . x)$) Step 2: Transmission DC -> AC the computed vector and matrix (in linear model: $x^T y$ and $(x^T x)$)

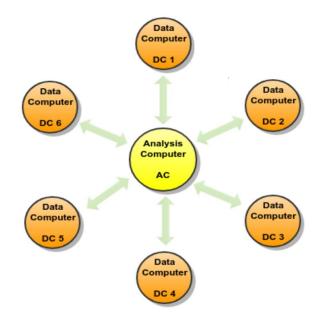
If GLM, fitted iteratively with IWLS, there are several steps, going back and forth until convergence

Final step : AC compute the estimates

Statistical challenges

• Why Cox analysis is not doable? Because of the Cox partial likelihood:

$$L(\beta) = \prod_{t_i} \frac{\exp[\beta X_i]}{\sum_{k \in R_i} \exp[\beta X_k]}$$


- ? mourning the study we dreamed of ... and being flexible
- As GLM and Lexis are available in DataSHIELD, a Poisson regression can be performed instead of a Cox.
- A Cox stratified analysis is doable with distcomp R-package.

Linear model: data splitted vertically

Linear regression $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + error term$

 $b = x^{T} \cdot y \cdot (x^{T} \cdot x)^{-1}$

 x^{T} . x as before _ no problem x[⊤].y???

Dataset 1:

Dataset 2:

dataset					
	у	x0	x1	x2	x3
obs	Carbo- hydrate		age	weight	protein
1	33	1	33	100	14
2	40	1	47	92	15
3	37	1	49	135	18
4	27	1	35	144	12
5	30	1	46	140	15
6	43	1	52	101	15
7	34	1	62	95	14
8	48	1	23	101	17
9	30	1	32	98	15
10	38	1	42	105	14

Other challenges

- Data harmonisation:
 - Step 1:

outcome definition: icd codes

selection of study individuals

which variables are available? How/when measured?

Do they mean the same thing?

Ex: disease duration, drug name, drug start date, ...

• Step 2:

same names, same formats/coding, same degree of precision, ... Ex: coding of sex

dataset					
	у	x0	x1	x2	x3
obs	Carbo- hydrate		age	weight	protein
1	33	1	33	100	14
2	40	1	47	92	15
3	37	1	49	135	18
4	27	1	35	144	12
5	30	1	46	140	15
6	43	1	52	101	15
7	34	1	62	95	14
8	48	1	23	101	17
9	30	1	32	98	15
10	38	1	42	105	14

In our team

- Goal: to perform a pilot study using a federated analysis approach
- Swedish and Danish registers data
- Research question
- "risk of neurological side effects of Tumor Necrosis Factor alphainhibitors (TNFi) among patients with arthritis"
- Study design:
 - cohort of arthritis patients
 - followed from registration (≥ 2001) until event/death/end 2016
 - patients enter the cohort either unexposed or exposed to TNFi
- Statistical analysis: Cox with time-varying exposure

Step we are involved right now

- Simulation of a cohort that we can analyse both with time-varying (exposure and covariates) Cox and Poisson with time-varying exposure and covariates
- in R
- Goal: compare estimates obtain with different statistical approaches and test DataSHIELD
- Why simulation? No constraint in sharing

Preliminary results on 1 simulated cohort

Model	HR (95% Confidence Interval)
Сох	2.05 (1.50 - 2.79)
Cox _ country 1	1.90 (1.30 - 2.79)
Cox _ country 2	2.46 (1.44 - 4.23)
Cox _ meta-analysis	2.08 (1.49 - 2.91)
Poisson	2.05 (1.50 - 2.79)
Poisson _ country 1	1.90 (1.30 – 2.78)
Poisson _ country 2	2.52 (1.47 – 4.33)

Thanks for your attention

References:

Wolfson M. et al. *International Journal of Epidemiology* 2010;39:1372–1382 Jones E.M. Et al. *Norsk Epidemiologi* 2012; 21 (2): 231-239